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Abstract 

Current vector search benchmarks rely on synthetic or low-dimensional datasets (e.g., 
GloVe-25, SIFT-128), which fail to represent real-world workloads like those from 
modern LLMs (e.g., OpenAI’s 3072d text-embedding-3-large). This project aims 
to create the first open-source 1B-scale vector embedding dataset using Wikipedia 
text processed through state-of-the-art open-source models, with three variants (1024, 
4096, and 8192 dimensions). The dataset will enable realistic benchmarking of 
Approximate Nearest Neighbor (ANN) algorithms and empower research in 
retrieval-augmented generation (RAG) systems. 

 

Problem Statement 

● Gap: Existing ANN benchmarks (ANN-Benchmarks, BigANN) use small (≤1M 
samples) or synthetic data, lacking: 

○ High dimensionality (>1000d) 
○ Real-world text distributions 
○ Scale (>100M vectors) 

● Impact: Researchers and companies currently rely on proprietary datasets, 
hindering reproducibility and fair algorithm comparisons. 

 

 

 



 

Project Goals 

1. Generate 1 billion text embeddings from English Wikipedia using open-source 
models. 

2. Provide multiple embedding dimensions (1024, 4096, 8192, etc) to study 
dimensionality’s impact on ANN performance. 

3. Ensure deduplication, compression, and metadata tracking for usability. 
4. Validate embeddings via statistical analysis and ANN benchmarks 

(FAISS/HNSW). 
5. Distribute the dataset efficiently via sharded cloud storage and documentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



 

Methodology 

1. Data Acquisition & Preprocessing 

● Source: Latest English Wikipedia dump (XML) → ~6M articles. 
● Tools: 

○ wikimedia-dump-downloader for XML retrieval. 
○ wikiextractor to strip markup and extract plaintext. 

● Cleaning Pipeline: 
○ Regex-based removal of non-ASCII chars, tables, citations. 
○ Paragraph splitting via nltk.tokenize (1 embedding/paragraph). 
○ Deduplication using MinHash + LSH (LSHForest) to remove 

near-identical chunks. 
● Output: ~1.1B cleaned text chunks stored in JSON Lines format. 

Why MinHash and LSH? 

● MinHash: A probabilistic algorithm to estimate the similarity between two sets 
(example could be b/w paragraphs). It works by: 

○ Hashing elements of each set (words in a paragraph). 
○ Selecting the minimum hash value for each set. 
○ Comparing the fraction of matching minimum hashes to estimate similarity 

(Jaccard Index). 
● LSH (Locality-Sensitive Hashing): Groups similar items into buckets using 

hash functions. It works by: 
○ Applying multiple hash functions to each MinHash signature. 
○ Placing items with matching hashes into the same bucket. 
○ Ensuring that similar items are likely to collide in the same bucket. 

● Why Use Them?: 
○ Efficiency: MinHash reduces the complexity of comparing billions of 

paragraphs. 
○ Scalability: LSH groups similar paragraphs for deduplication without 

pairwise comparisons. 
○ Accuracy: Ensures near-duplicate paragraphs (e.g., boilerplate text) are 

removed, improving dataset quality. 

 

 

 

 



 

2. Embedding Generation 
 
Model Selection 
 
After careful evaluation of various embedding models, I've selected 
Linq-AI-Research/Linq-Embed-Mistral (subject to change as per experiments) as the 
optimal model for this project based on: 
 
- Performance: Consistently ranks in the top positions on the MTEB leaderboard for 
retrieval and semantic similarity tasks 
- Efficiency: Offers an excellent balance between embedding quality and computational 
requirements 
- Open Source: Fully open-source model available on Hugging Face, ensuring 
reproducibility 
- Community Adoption: Widely used in production RAG systems and retrieval 
applications 
 
With the single-model approach, we can refine our infrastructure strategy: 
- Deploy optimized vLLM configurations specifically tuned 
forLinq-AI-Research/Linq-Embed-Mistral.  
- Implement model-specific batching strategies that maximize throughput 
- Optimize memory usage patterns based on the model's specific characteristics 
- Apply tailored quantization techniques appropriate for this embedding model 

 

3. Storage & Compression 

● Format: Lance (50% size reduction). 
● Sharding: Split into 10,000 files (100K vectors/file) for partial downloads. 
● Metadata: Track model versions, text source URLs, and processing timestamps. 

 

4. Validation 

● Statistical Tests: 
○ PCA variance analysis (≥80% variance in ≤20% dimensions). 
○ Cosine similarity distribution checks. 

● ANN Benchmarks: 
○ Recall@10 tests on FAISS-IVF, HNSW, and Annoy. 
○ Query latency profiling on GPU/CPU platforms. 

 



 

 

5. Distribution 

● Hosting: AWS S3 (public bucket)+ HuggingFace  
● Tooling: Python CLI for incremental downloads. (extra idea)  
● Documentation: Tutorials for loading shards, reproducing results, and extending 

to new models. 

 

 
Timeline 
 
Phase 1: Data Acquisition & Preprocessing (Weeks 1-3) 
- Week 1: 
  - Set up development environment and version control 
  - Implement Wikipedia dump downloader with monitoring 
  - Create initial text extraction pipeline using wikiextractor 
  - Set up CI/CD for continuous testing 
 
- Week 2: 
  - Implement text cleaning pipeline with regex and NLTK 
  - Build paragraph splitting and normalization logic 
  - Develop and test initial MinHash implementation 
  - Create metrics for data quality assessment 
 
- Week 3: 
  - Implement full LSH-based deduplication system 
  - Optimize MinHash + LSH for large-scale processing 
  - Set up distributed processing for cleaning pipeline 
  - Validate quality metrics on sample data 
 
Phase 2: Embedding Generation (Weeks 4-7) 
- Week 4: 
  - Set up vLLM infrastructure on AWS for GPU optimization 
  - Implement embedding generation pipeline for Linq-AI-Research/Linq-Embed-Mistral 
  - Create benchmarking suite for throughput optimization 
  - Develop sharding strategy for distributed computation 
 

 



 

- Week 5-6: 
  - Scale embedding generation to full Wikipedia corpus 
  - Implement efficient batch processing strategies 
  - Optimize memory usage for large-scale inference 
  - Develop fallback mechanisms for handling failures 
 
- Week 7: 
  - Conduct quality assessment of generated embeddings 
  - Implement dimension projection techniques (PCA, random projection) 
  - Create derived datasets at different dimensionalities 
  - Validate quality preservation across dimension transformations 
 
Phase 3: Storage & Multi-Purpose Adaptation (Weeks 8-10) 
- Week 8: 
  - Implement Lance storage system with optimized compression 
  - Design unified metadata schema across original and derived embeddings 
  - Create efficient shard management system 
  - Develop vector quality assessment tools 
 
- Week 9-10: 
  - Implement statistical validation suite for all embedding variants 
  - Create ANN benchmarking framework for different dimensions 
  - Develop specialized indices for different use cases 
  - Document performance characteristics across dimensions 
 
Phase 4: Evaluation & Distribution (Weeks 11-12) 
- Week 11: 
  - Conduct comprehensive benchmarking across all embedding variants 
  - Evaluate performance in retrieval, classification, and clustering tasks 
  - Create task-specific recommendation framework 
  - Develop distribution tools and documentation 
 
- Week 12: 
  - Finalize dataset packaging for HuggingFace and AWS S3 
  - Complete benchmark reports for all dimensionalities 
  - Create interactive tutorials and examples 
  - Prepare final documentation and submission 

 

 



 

Expected Outcomes 
1. Billion-Scale Vector Embeddings Dataset 
- Complete Dataset: A comprehensive collection of 1 billion text embeddings derived 
from English Wikipedia, provided in three dimensionalities: 
  - 1024-dimensional vectors 
  - 4096-dimensional vectors  
  - 8192-dimensional vectors  
- Quality Assurance: Each embedding set undergoes rigorous deduplication, 
normalization, and statistical validation to ensure research-grade quality. 
- Metadata Enrichment: Comprehensive metadata including source text, paragraph 
context, article titles, URL identifiers, and processing timestamps to enhance usability. 
 

2. Reproducible Pipeline & Tooling 
- End-to-End Processing Framework: A fully documented, modular pipeline for 
Wikipedia text extraction, cleaning, and embedding generation. 
- Efficient Storage System: Implementation of Lance-based storage with optimized 
compression and sharding, reducing storage requirements by >50% compared to raw 
formats. 
- CLI Tools: User-friendly command-line tools for dataset exploration, partial 
downloads, and custom embedding generation. 
 
3. Comprehensive Benchmarking Suite 
- ANN Algorithm Evaluation: Detailed performance analysis of leading vector search 
algorithms (FAISS-IVF, HNSW, ScaNN) across all three dimensionalities. 
- Scaling Reports: Documentation of throughput, recall, and latency characteristics at 
varying index sizes (10M, 100M, 1B vectors). 
- Hardware Profiling: Benchmarks across different hardware configurations (CPU, 
GPU, memory constraints) to guide real-world deployment decisions. 
- RAG Performance Analysis: Evaluation of retrieval quality for question-answering 
tasks, demonstrating practical applications in retrieval-augmented generation systems. 
 
4. Community Resources 
- Interactive Documentation: Comprehensive guides, tutorials, and Jupyter notebooks 
demonstrating dataset usage. 
- Academic Paper: Submission-ready research paper documenting methodology, 
statistical properties, and benchmark results. 
- Extension Framework: Guidelines and tools for extending the dataset with new 
embedding models or data sources. 

 

 



 

Open Source Impact 

● ANN Libraries: FAISS, HNSWlib, and ScaNN can use this dataset to improve 
benchmarks. 

● Research: Enables studies on high-dimensional ANN scalability and RAG 
optimization. 

● Sustainability: Compressed/sharded design reduces access barriers for 
low-resource teams. 

 

About Me 
I am Prathamesh Devadiga, currently pursuing a Bachelor of Technology in Computer 
Science Engineering at PES University, Bangalore (2022-2026). My academic focus 
includes Data Structures, Algorithms, Machine Learning, Deep Learning, Operating 
Systems, Big Data, and Databases 

Relevant Experience 

- Lead Researcher & Founder, Adhāra AI Labs: Leading research in Machine 
Learning with a focus on Generative AI, Large Language Models, and 
Retrieval-Augmented Generation. Leading cross-functional teams to translate research 
into production applications. [https://aadhara-ai-labs.vercel.app/]  

- AI Engineer Intern, IndhicAI: Contributing to customized Gen-AI workflows and 
pipelines, providing technical advisory for AI readiness evaluations, and researching 
ML/DL/NLP pipelines for end-to-end implementation. 

- Research Intern, IIT Indore:  Architected and implemented KASPER (Kernel 
Adaptive Spline-based PDF Attack Recognizer), a novel deep learning framework 
achieving 98.9% accuracy in PDF malware detection with robust defense against 
adversarial attacks. 

- Summer Intern, The Innovation Lab (formerly, Microsoft Innovation Lab):  
Architected and fine-tuned a Mistral 7B model to create a multi-agent system 
comprising a code optimizer, reviewer, and test case writer, significantly enhancing 
automation and efficiency in code assessment. Achieved high evaluation scores 
(CodeBLEU: 80) for code review and generation, demonstrating effective AI-driven code 
analysis and optimization. 
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Relevant Projects 

- Medical RAG: Developed a Retrieval-Augmented Generation (RAG) application for 
querying medical documents using vector search and semantic retrieval techniques with 
optimized embedding models. 

- PyraFuseNet: Designed a dual-path network architecture for resource-constrained 
vision applications, achieving state-of-the-art accuracy with 55% fewer computations 
compared to ResNet-18 (accepted at ICIAI NTU Singapore). 

- CoDSPy: Built an AI-powered code optimization system using DSPy and Gradio, 
implementing Chain-of-Thought and ReAct reasoning techniques for comprehensive 
code optimization. 

- E-Commerce Analytics: Developed a real-time data processing system using 
Apache Flink to handle large-scale streaming data with PostgreSQL and Elasticsearch 
integration. 

Technical Skills Relevant to This Project 

- Languages & Libraries: Python, Go, SQL, Bash, PyTorch, Hugging Face, 
LangChain, LlamaIndex, Apache Spark, vLLM, Lance and DataSketch.   

- Data Processing: Apache Spark, Kafka, and large-scale data pipelines 

- Cloud & Infrastructure: AWS, Docker, and Kubernetes for scalable deployments 

- Research Experience: Published paper at ICIAI NTU Singapore and under-review 
paper at IJCNN, showing expertise in computational efficiency and architecture 
optimization relevant to large-scale vector processing 

Why I'm Ideal for This Project 

My combined experience in deep learning research, vector embeddings work with RAG 
systems, and large-scale data processing makes me well-equipped to tackle the 
challenges of creating a billion-scale embedding dataset. I have hands-on experience 
with the exact embedding models proposed in this project, and my background in 
distributed systems will be crucial for the high-performance computing aspects of the 
work. As an active contributor to open-source AI projects and participant in the Oxford 
Machine Learning School 2024 and AWS AI-ML Scholar Program, I bring both technical 
expertise and a collaborative approach to open science that aligns perfectly with the 
goals of this GSoC project. 
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